Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces.

نویسندگان

  • Adarsh D Radadia
  • Courtney J Stavis
  • Rogan Carr
  • Hongjun Zeng
  • William P King
  • John A Carlisle
  • Aleksei Aksimentiev
  • Robert J Hamers
  • Rashid Bashir
چکیده

Immunoassays for detection of bacterial pathogens rely on the selectivity and stability of bio-recognition elements such as antibodies tethered to sensor surfaces. The search for novel surfaces that improve the stability of biomolecules and assay performance has been pursued for a long time. However, the anticipated improvements in stability have not been realized in practice under physiological conditions because the surface functionalization layers on commonly used substrates, silica and gold, are themselves unstable on time scales of days. In this paper, we show that covalent linking of antibodies to diamond surfaces leads to substantial improvements in biological activity of proteins as measured by the ability to selectively capture cells of the pathogenic bacterium Escherichia coli O157:H7 even after exposure to buffer solutions at 37 °C for extended periods of time, approaching 2 weeks. Our results from ELISA, XPS, fluorescence microscopy, and MD simulations suggest that by using highly stable surface chemistry and controlling the nanoscale organization of the antibodies on the surface, it is possible to achieve significant improvements in biological activity and stability. Our findings can be easily extended to functionalization of micro and nanodimensional sensors and structures of biomedical diagnostic and therapeutic interest.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bioactivity Determination of Recombinant lysostaphin Immobilized on Glass Surfaces Modified by Cold Atmospheric Plasma on Staphylococcus aureus

Introduction: Staphylococcus aureus is a source of nosocomial infections and one of the significant concerns in patients with indwelling devices. Lysostaphin is a bacterially produced endopeptidase with a unique activity on S. aureus. Plasma, the fourth state of the material, consists of charged ions, free electrons, and activated neutral species. Biomedical applications of cold plasma are rapi...

متن کامل

Effects of cadmium chloride as inhibitor on stability and kinetics of immobilized Lactoperoxidase(LPO) on silica-coated magnetite nanoparticles versus free LPO

Objective(s): Enzyme immobilization via nanoparticles is perfectly compatible against the other chemical or biological approximate to improve enzyme functions and stability. In this study lactoperoxidase was immobilized onto silica-coated magnetite nanoparticles to improve enzyme properties in the presence of cadmium chloride as an inhibitor. Materials and Methods:  The process consists of the ...

متن کامل

Simple and Rapid Immobilization of Firefly Luciferase on Functionalized Magnetic Nanoparticles; a Try to Improve Kinetic Properties and Stability

We expressed and purified a recombinant P. pyralis luciferase with N-terminal His-tags. The silanized Ni or Cu-loaded magnetic particles were prepared and used to assemble the His-tagged P. pyralis luciferase. This enzyme immobilized on functionalized magnetic nanoparticles (MNPs) via electrostatic interactions of His-tag with Ni2+/Cu2+ ions on the surface of MNPs using si...

متن کامل

BMP-2 immobilized on nanocrystalline diamond-coated titanium screws; demonstration of osteoinductive properties in irradiated bone.

BACKGROUND Irradiation results in impaired bone healing. Thus, osteosynthesis procedures are afflicted with increased failure rates. To improve osseointegration bone morphogenetic protein-2 (BMP-2) immobilized on nanocrystalline diamond (NCD)-coated implant surfaces might be 1 solution. METHODS By 4 weeks after irradiation of pig's mandible with a dose of 60 Gy a fracture was accomplished. Os...

متن کامل

An Investigation on Stability, Electrical and Thermal Characteristics of Transformer Insulting Oil Nanofluids

Transformer insulating oil nanofluid is made to improve dielectric and thermal properties of the oil by employing nanoparticles with proper properties. In the current work, nanofluids based on transformer mineral oil were prepared by three procedures using diamond nanoparticles with high thermal conductivity, as well as high dielectric properties. It was tried to consider the impacts of surfact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Advanced functional materials

دوره 21 6  شماره 

صفحات  -

تاریخ انتشار 2011